

УДК 547.92'771.057:577.175.62'17

АЦИЛГИДРАЗОНЫ 20-КЕТОСТЕРОИДОВ И ИХ ПРЕВРАЩЕНИЯ. І. СИНТЕЗ И СВОЙСТВА 1'-АЦИЛЗАМЕЩЕННЫХ З'-МЕТИЛАНДРОСТЕНО[16,17-*d*]ПИРАЗОЛИНОВ

© 2007 г. А. В. Камерницкий[#], Е. И. Чернобурова, В. В. Черткова, И. В. Заварзин, В. Н. Яровенко, М. М. Краюшкин

Институт органической химии им. Н.Д. Зелинского РАН, 119991, Москва, Ленинский просп., 47 Поступила в редакцию 28.08.2006 г. Принята к печати 03.10.2006 г.

В процессе поиска путей получения и изучения свойств З'-метиландростено[16,17-*d*]азолов – перспективных биологически активных аналогов 20-кетопрегненанов – осуществлен синтез ацетатов Зβ-гидрокси-3'-метил-1'(*N*)-ациландрост-5-ено[16,17-*d*]пиразолинов, несущих в качестве ацильных групп производные монотиооксамидов. Показано, что процесс циклизации Δ^{16} -20-тиооксамидогидразонов в соответствующие гетероциклы протекает в жестких условиях и частично зависит от природы оксамидной группировки.

Ключевые слова: гетероциклостероиды, Δ^{16} -20-тиооксамидогидразоны, циклизация, 3 β -гидрокси-3'-метил-1'(N)-ациландрост-5-ено[16,17-d]пиразолины, 3 β -гидрокси-3'-метиландрост-5-ено[16,17-d]пиразолины, разол.

ВВЕДЕНИЕ

Аналоги стероидных гормонов, конденсированные в 16,17-положениях с азотистыми гетероциклами, представляют большой интерес как биологически активные препараты, проявляющие зачастую не только избирательное биологическое действие, но и обладающие таким сочетанием эффектов, которое невозможно для нативных гормонов. Наиболее подробно изучены в этом отношении производные 20-кетопрегнана, конденсированные в 16а,17а-положениях с самыми разнообразными гетероциклами [1]. Такие аналоги кортикоидов подчас проявляют характерный для глюкокортикоидов противовоспалительный эффект, но они либо полностью лишены тимолитической активности, либо даже вызывают стимуляцию иммунитета [2, 3]. Аналоги прогестерона с 16α,17α-пятичленным гетероциклом проявляют прогестинное действие на уровне прогестерона, практически независимо от природы входящих в него гетероатомов [4, 5]. В то же время показатели влияния таких соединений на натрий-калиевый обмен и функционирование Na⁺, K⁺-зависимой АТРазы в клетке резко меняются в зависимости от природы гетероцикла [6]. Мы полагаем, что такая трансформация спектра активности, происходящая при конденсации стероида с 16,17-гетероциклом, особенно с пятичленным, связана с изменением геометрии кольца D, вызванного стерическим напряжением, обусловленным жестко связанным с ним гетероциклом [7].

Синтез 16,17-стероидоазолов был нами досконально изучен ранее на примерах раскрытия гидразонов 16,17-эпокси- и эпимино-20-кетопрегнанов [1] и конденсации Δ^{16} -20-кетопрегнанов с нитроновым эфиром [8]. У всех полученных соединений сохраняется 17-ацетильная боковая цепь. Гораздо менее известны 16,17-гетероциклостероиды, у которых прегнановая боковая цепь включена в гетероцикл – 3'метиландростаноазолы.

Все это заставило нас обратиться к синтезу таких соединений для изучения связи между их строением и биологическими свойствами. Вероятно их можно получить циклизацией 20-гидразонов, несущих соответствующие заместители. Такие З'-метиландростено[16,17-d]пиразолы были получены при циклизации гидразонов 16,17-эпокси-20-кетостероидов [9]. Их N-ацетилпроизводные, в отличие от 3'показали метил-*N*-арилпиразолов, интересный спектр биологических свойств [2]. Установили, что при включении 17-боковой цепи в состав гетероцикла для возникновения биологической активности необходимо либо желательно наличие в этой области молекулы ацильного заместителя. Особый интерес могут представлять 16,17-гетероциклостероиды, полученные на основе недавно синтезированных сложно замещенных гидразонов монотиогидразидов оксаминовых кислот [10]. Известно, что соединения, полученные из гидразонов нестероидных кетонов, содержащие в одной молекуле тиогидразонную и оксамидную группы, проявляют

[#] Автор для связи (тел.: (495) 137-73-31; факс: (495) 135-53-28; эл. почта: kamer@ioc.ac.ru).

биологическую активность, из них можно легко синтезировать различные гетероциклические структуры и получить комплексы с металлами [11].

Химические свойства тиогидразонов оксаминовых кислот обусловлены различием в реакционной способности оксамидной и тиогидразонной группировок. Вследствие легкой поляризуемости π-связи тиокарбонильная группа значительно легче, чем карбонильная, взаимодействует с нуклеофильными реагентами [12]. Объединение таких группировок с хиральным стероидным скелетом открывает широкие возможности для получения системных наборов гетероциклостероидов, обладающих ценными биологическими свойствами, что, в свою очередь, и может привести к созданию препаратов с направленным действием.

Настоящая работа открывает серию статей по изучению путей синтеза, превращений и биологических свойств замещенных в основном скелете тиооксамидов 20-гидразонов стероидов и посвящена реакции гидразидов тиооксамидов с 3-ацетатом дегидропрегненолона (**I**).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

17α-Гидрокси-20-гидразоны стероидов широко используются для введения 16,17-двойной связи [13], 20-гидразоны 16а,17а-эпокси- и эпиминостероидов нашли применение для синтеза 16α,17α-цисгетерозамещенных соединений [1], однако возможности превращений и, в частности, циклизация Δ^{16} -20-гидразонов прегнанового ряда изучены гораздо меньше. Известно [14], что нестероидные арилгидразоны сопряженных кетонов очень легко циклизуются в соответствующие пиразолины, что не типично для ацилгидразонов и семикарбазонов. Это может быть связано либо с электроноакцепторным характером заместителя при аминном атоме гидразона [14], либо с неподходящей Z, Е-конфигурацией 20-ацилгидразона [15]. Для ацилгидразонов Δ^{16} -20кетостероидов к этому добавляется пространственная затрудненность замыкания связи между С16- и N1'-атомами, связанная с необходимостью искажения конформации кольца D.

Одно из немногих известных таких соединений ряда прегнана – *N*-ацетил-3-ацетоксиандрост-5-

ено[16,17-*d*]пиразолин – был получен нами ранее при нагревании соединения (I) с гидразингидратом в уксусной кислоте, причем тогда мы полагали, что реакция протекает с образованием незамещенного при азоте пиразолина и последующим его *N*-ацетилированием [16]. Это *N*-ацетильное соединение оказалось очень стабильным как к щелочному гидролизу, так и к попыткам дегидрирования в соответствующий пиразол.

Обработка в течение 24 ч соединения (I) монотиогидразидами оксамидов NH₂NHC(S)C(O)NHR, различающихся амидными заместителями (R = 2бром-1-фенил; 3-этоксикарбонил-5-этил-2-тиоленил; 2-пиридил) [10], в обычных мягких условиях получения гидразонов (AcOH, 20°C) привела к незначительной степени превращения исходных веществ. В то же время ужесточение условий реакции привело к образованию (в случае бромфенилтиогидразида) соответствующего 20-гидразона (ІІ), тогда как единственными продуктами реакции двух других тиогидразидов были *N*-ацилпиразолины (Ша) и (Шb) (схема). Сохранение ацильной группировки исходных тиогидразидов в получаемых пиразолинах при нагревании в уксусной кислоте свидетельствует, что в описанном ранее случае [16] образование З'-метил-1'-ацетилпиразолина протекает, по-видимому, через предварительное ацетилирование гидразингидрата.

Как и следовало ожидать, *N*-ацильная группировка в ацилпиразолинах (Ша) и (Шb) оказалась весьма устойчивой к щелочному гидролизу. Обработка пиразолина (Шb) 10%-ным раствором NaOH в диметилформамиде при 50°С привела только к снятию 3-ацетильной защитной группы с образованием спирта (IV). Лишь при кипячении соединения (Шb) в диметилформамиде с 20%-ной щелочью был получен продукт, соответствующий по своим физико-химическим показателям свободному 3βгидроксиандрост-5-ено[16β , 17β -*d*]пиразолину (V). Интересно, что это соединение имеет двойную точку плавления: одну при 128-130°С и вторую - с разложением - выше 250°С, что говорит о его термическом дегидрировании в стероидопиразол (VI), строение которого было подтверждено данными масс-спектрометрии.

Соединение	H18	H19	H21	3-OAc	H17	H3	H16	H6
(I)	0.90	1.05	2.03	2.25		4.60	6.70	5.40
(II)	0.98	1.05	2.05	2.13		4.41	6.62	5.40
(IIIa)	0.99	1.05	2.05	2.13	3.40	4.46	5.05	5.40
(IIIb)	0.99	1.05	2.05	2.13	3.40	4.41	5.05	5.40
(IV)	0.99	1.05	2.05		3.40	3.51	5.05	5.40
(V)	0.75	1.05	1.88		2.30	3.51	3.58	5.40

Данные спектров ¹H-ЯМР (DMSO- d_6 , δ , м.д.)

БИООРГАНИЧЕСКАЯ ХИМИЯ том 33 № 3 2007

i – NH₂NHC(S)C(O)NHPhoBr/AcOH/кип.; *ii* – NH₂NHC(S)C(O)NH(C₄HS)-2-CO₂Et-3-C₂H₅/AcOH/кип.; *iii* – NH₂NHC(S)C(O)NHC₄H₄N/Py/AcOH/кип.; *iv* – DMF/10% NaOH/50°C; *v* – DMF/20% NaOH/кип.; *vi* – плав.

Схема.

Строение всех впервые полученных соединений однозначно подтверждено их физико-химическими показателями, в первую очередь данными спектров ЯМР (таблица).

Как видно из данных таблицы, в пиразолинах с боковой цепью (IIIa) и (IIIb) в ¹Н-ЯМР-спектрах имеются сигналы атомов водорода при атоме C17 пиразолинового цикла с хим. сдвигами 3.20 и 3.05 м.д., а также сигналы атомов водорода при C16 пиразолинового цикла с хим. сдвигами 5.15 и 5.02 м.д., соответственно. Отсутствие 1'-заместителя в пиразолине (V) приводит к смещению этих сигналов в более сильное поле. Так, в NH-пиразолине (V) хим. сдвиг сигнала водорода при C16 составляет 3.58 м.д., а при C17 – 2.30 м.д. Эти данные однозначно свидетельствуют о *цис*-конфигурации 16,17-связи кольца D и пиразолинового цикла. Однако вопрос о α - или β -конфигурации самого гетероцикла должен быть решен с помощью PCA, результаты которого будут опубликованы позднее.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ¹Н-, ¹³С-ЯМР (δ , м.д., *J*, Гц) зарегистрированы на приборе Bruker AC-300 (рабочая частота 300 МГц, Германия) в DMSO-*d*₆. Масс-спектры записаны на приборе Kratos (Япония) с прямым вводом образца в источник облучения с энергией ионизации 70 эВ и управляющим напряжением 1.75 кВ. Монотиогидразиды [14] использовались нами без дополнительной очистки. В работе применяли коммерчески доступные реактивы фирмы "Acros". Для хроматографии на колонках и в тонком слое использовали SILPEARL (Чехия).

20-[2'-(2-Броманилино)-2'-оксоэтантионогидразон] Зβ-ацетоксипрегна-5,16-диен-20-она (II). Раствор 356 мг (1 ммоль) ацетата дегидропрегненолона (I) и 301 мг (1.1 ммоль) тиогидразида 2-бромфенилтиооксаминовой кислоты в 7 мл ледяной АсОН кипятили 4 ч. Затем реакционную смесь охлаждали, добавляли 10 мл воды и оставляли на ночь. Образовавшийся осадок отфильтровывали, промывали водой, гептаном и сушили в вакууме. Получали 400 мг смеси, после очистки которой на колонке с SILPEARL (этилацетат-гексан, 1 : 1) выделяли 250 мг (выход 41%) гидразона (II), т. пл. 185–186°С. Найдено, %: С 60.55; Н 6.31; N 6.79. С₃₁Н₃₈BrN₃O₃S. Вычислено, %: С 60.78; Н 6.25; N 6.86. Спектр ¹Н-ЯМР: 1.10 (6 H, c, H18 и H19); 2.05 (3 H, c, H21); 2.30 (3 H, с, ОАс); 4.61 (1 H, м, H3); 5.40 (1 H, с, H6); 6.50 (1 Н, м, Н16); 7.09 (1 Н, м, J 7.25, аром.); 7.39 (1 Н, м, J 7.76, аром.); 7.62 (1 H, д, J 7.74, аром.); 8.40 (1 H, д, J 7.76, аром.); 10.80 (1 H, c, NH); 11.75 (1 H, c, NH). Масс-спектр, m/z: 612 [M^+]; 472 [$M^+ - 80 - 60$].

3β-Ацетилокси-1'-[2"-оксо-2"-(5-этил-3-этоксикарбонилтиолен-2-иламино)]этантион-3'-метиландрост-5-ено[16,17-*d*]пиразолин (Ша). Раствор соединения (I) (356 мг, 1 ммоль) и тиогидразида (5этил-3-этоксикарбонилтиолен-2-ил)тиооксаминовой кислоты (331 мг, 1.1 ммоль) в 7 мл ледяной АсОН кипятили 3 ч и затем добавляли 10 мл воды. Выпавший осадок отфильтровывали, промывали водой (3 × 15 мл), гептаном, сушили на воздухе. Остаток массой 470 мг хроматографировали на колонке, элюент этилацетат-гексан, 1:3. Получали 350 мг (56%) производного пиразолина (Ша), т. пл. 135-137°С. Найдено, %: С 63.95; Н 7.20; N 6.39. $C_{34}H_{45}N_3O_5S_2$. Вычислено, %: C 63.82; H 7.09; N 6.57. Спектр ¹Н-ЯМР: 1.00 (3 H, c, H18); 1.05 (3 H, c, H19); 1.30 (6 H, c, 2CH₂CH₃); 2.05 (3 H, с, H21); 2.13 (3 H с, OAc); 2.75 (2 H, м, CH₂CH₃); 3.20 (1 H, д, J 8.45, H17); 4.30 (2 H, м, С<u>H</u>₂CH₃); 4.60 (1 Н, м, Н3); 5.15 (1 Н, м, J 7.73, Н16); 5.40 (1 Н, с, Нб); 6.89 (1 Н, с, тиофен); 11.32 (1 Н, с, NH). Массспектр, *m/z*: 639 [*M*⁺]; 370 [*M*⁺ – 269].

3β-Ацетилокси-1'-[2''-оксо-2''-(2-пиридиниламино)]этантион-3'-метиландрост-5-ено[16,17-*d***]пиразолин (IIIb). Раствор соединения (I) (356 мг, 1 ммоль) и тиогидразида (2-пиридинил)тиооксаминовой кислоты (215 мг, 1.1 ммоль) в 7 мл абс. пиридина кипя-** тили 3 ч в присутствии каталитического количества ледяной АсОН. Затем реакционную смесь охлаждали, добавляли воду (10 мл), экстрагировали этилацетатом $(3 \times 7 \text{ мл})$. Органические слои объединяли, промывали 2% HCl, а затем водой. Сушили MgSO₄, удаляли растворители, из 450 мг полученного остатка методом ТСХ (этилацетат–гексан, 1:1) выделяли 270 мг (50.5%) производного пиразолина (Шb), т. пл. 130–132°С (бензол). Найдено, %: С 67.5; Н 7.27; N 10.38. С₃₀Н₃₈N₄O₃S. Вычислено, %: С 67.39; Н 7.16; N 10.48. Спектр ¹Н-ЯМР: 0.98 (3 H, с, Н18); 1.00 (3 H, c, H19); 2.03 (3 H, c, H21); 2.13 (3 H, c, OAc); 3.05 (1 H, д, J_{H17,H16} 8.3, H17); 4.60 (1 H, м, H3); 5.40 (1 H, с, H6); 5.02 (1 H, м, J 8.0, H16); 7.04 (1 H, м, Ру); 7.75 (1 Н, м, J 7.05, Ру); 8.20-8.40 (2 Н, д, Ру); 9.00 (1 H, c, NH). Спектр ¹³С-ЯМР: 183.006 (С=S); 169.704 (C=O, OAc); 166.138 (C=O, O=C-NH); 164.559 (CPy); 151.684 (CH Py); 138.271 (CH Py); 121.821 (CH Py). Масс-спектр, m/z: 370 [M^+ – 164].

3В-Гидрокси-1'-[2"-оксо-2"-(2-пиридиниламино)]этантион-3'-метиландрост-5-ено[17,16-d]пиразолин (IV). Раствор 3-ацетата пиразолина (IIIb) (53.4 мг, 0.1 ммоль) в 2 мл DMF и 3 мл 10% NaOH нагревали при 50°С в течение 7 ч. Реакционную смесь разбавляли водой, выпавший осадок отделяли, промывали водой, гептаном и сушили в вакууме. Получали 37 мг (75%) 3-гидроксипиразолина (**IV**), т. пл. 158-159°С. Найдено, %: С 68.31; Н 7.28; N 11.31. С₂₈Н₃₆N₄O₂S. Вычислено, %: С 68.26; Н 7.37; N 11.37. Спектр ¹Н-ЯМР: 0.98 (3 H, c, H18); 1.01 (3 H, c, H19); 2.02 (3 H, с, H21); 3.05 (1 H, д, J 8.3, H17); 3.51 (1 H, м, Н3); 5.01 (1 H, тр, J 8.01, Н16); 5.45 (1 H, с, Н6); 7.04 (1 Н, м, Ру); 7.74 (1 Н, тр, *J* 7.06, Ру); 8.20–8.45 (2 Н, д, Ру); 9.03 (1 H, c, NH). Масс-спектр, *m*/*z* : 492 [*M*⁺], $328 [M^+ - 164].$

3β-Гидрокси-З'-метиландрост-5-ено[16,17-d]пиразолин (V). К раствору 3-ацетата пиразолина (IIIb) (53.4 мг, 0.1 ммоль) в 2 мл DMF при перемешивании прибавляли 3 мл 20% NaOH. Реакционную смесь кипятили 7 ч, разбавляли водой, выпавший осадок отделяли, промывали водой до рН 7, гептаном и сушили в вакууме. Получали 20 мг (61%) пиразолина (V), т. пл. 128–130°С, затем отвердевание и плавление с разл. при >250°С. Найдено, %: С 76.84; Н 9.77; N 8.50. С₂₁Н₃₂Ñ₂O. Вычислено, %: С 76.78; Н 9.82; N 8.50. Спектр ¹Н-ЯМР: 0.75 (3 H, c, H1); 1.01 (3 H, c, H19); 1.88 (3 H, с, H21); 2.30 (1 H, д, J 9.5, H1); 3.50 (1 H, м, Н3); 3.58 (1 Н, м, Н16); 5.35 (1 Н, с, Н6). Масс-спектр, *m*/*z*: 327 [*M*⁺]. После термической обработки соединения (Шb) при 145-150°С в течение нескольких минут получен твердый продукт (VI), т. разл. >250°С (масс-спектр, m/z: 327 [M + 1]), выделенный, как мы полагаем, в протонированной форме (что объясняет отсутствие точки плавления).

СПИСОК ЛИТЕРАТУРЫ

 Kamernitsky A.V., Turuta A.M. // Heterocycles. 1977. V. 7. P. 547–591.

БИООРГАНИЧЕСКАЯ ХИМИЯ том 33 № 3 2007

- Терехина А.И., Грицина Г.И., Камерницкий А.В., Лисица Л.И., Павлова-Гришина Н.С., Скорова А.В. // Хим.-фарм. журн. 1976. № 9. С. 31–35.
- Камерницкий А.В., Левина И.С., Терехина А.И., Грицина Г.И. // Хим.-фарм. журн. 1980. № 1. С. 37– 40.
- Войшвилло Н.Е., Волькенштейн Ю.Б., Ганина И.В., Грицина Г.И., Истомина З.И., Камерницкий А.В., Карева А.Д., Леонтьев И.Г., Поселенов А.И., Терехина А.И., Турута А.М. // Хим.фарм. журн. 1976. № 6. С. 41–46.
- Терехина А.И., Горенбурова Е.Н., Антипова Л.А., Камерницкий А.В., Истомина З.И., Турута А.М., Фадеева Т.М., Карапетьян А.А., Стручков Ю.Т. // Хим.-фарм. журн. 1983. № 7. С. 813–816.
- Kamernitsky A.V., Smolenskii E.A., Makeev G.M., Vesela I.V., Mirsalikhova N.M., Turuta A.M., Zefirov N.S. // Russian J. of Bioorganic Chemistry. 2002. V. 28. P. 269–276. (Камерницкий А.В., Смоленский Е.А., Макеев Г.М., Весела И.В., Мирсалихова Н.М., Турута А.М., Зефиров Н.С. // Биоорган. химия. 2002. T. 28. C. 269–276.)
- Kamernitsky A.V., Levina I.S. // Russian J. of Bioorganic Chemistry. 2004. V. 31. Р. 105–118. (Камерницкий А.В., Левина И.С. // Биоорган. химия. 2004. Т. 31. С. 115–129.)

- Levina I.S., Mortikova E.I., Kamernitsky A.V. // Synthesis. 1974. P. 562.
- 9. Ахрем А.А., Дубровский В.А., Камерницкий А.В., Скорова А.В. // Изв. АН СССР. Сер. хим. 1968. № 12. С. 2807–2810.
- Краюшкин М.М., Яровенко В.Н., Заварзин И.В. // Изв. АН. Сер. хим. 2004. № 3. С. 491–501.
- Яровенко В.Н., Широков А.В., Крупинова О.Н., Заварзин И.В., Краюшкин М.М. // Журн. орг. химии. 2002. Т. 39. С. 1204–1210.
- 12. Яровенко В.Н., Косарев С.А., Заварзин И.В., Краюшкин М.М. // Изв. АН. Сер. хим. 1999. № 3. С. 753–757.
- Beard C.C. Introduction of double bonds into the steroid system // Organic reactions in steroid chemistry / Eds J. Fried, J.A. Edwards. N.-Y., Cincinnati, Toronto, London: VNR, 1972. P. 265–374.
- 14. *Китаев Ю.П., Бузыкин Б.И*. Гидразоны. М.: Наука, 1974. С. 3–415.
- Камерницкий А.В., Турута А.М., Истомина З.И., Коробов А.А. // Изв. АН СССР. Сер. хим. 1987. № 1. С. 194–198.
- Камерницкий А.В., Павлова-Гришина Н.С., Скорова А.В. // Изв. АН СССР. Сер. хим. 1980. № 5. С. 1136–1139.

Acylhydrazones of 20-Keto Steroids and Their Transformations: I. Synthesis and Properties of 1'-Acyl-Substituted 3'-Methylandrosteno[16,17-d]pyrazolines

A. V. Kamernitsky[#], E. I. Chernoburova, V. V. Chertkova, I. V. Zavarzin, V. N. Yarovenko, and M. M. Krayushkin

[#]Phone: +7 (495) 137-7331; fax: +7 (495) 135-5328; e-mail: kamer@ioc.ac.ru

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii pr. 47, Moscow, 119991 Russia

Acetates of 3β -hydroxy-3'-methyl-1'(*N*)-acylandrost-5-eno[16,17-*d*]pyrazolines bearing monothiooxamide acyl groups were synthesized during the study of approaches to the synthesis of 3'-methylandrosteno[16,17-*d*]azoles, promising biologically active analogues of 20-keto pregnenanes, and their properties were investigated. The cyclization of Δ^{16} -20-thiooxamidohydrazones to the corresponding heterocycles was shown to proceed under rigorous conditions and to depend partially on the nature of the oxamide grouping. The English version of the paper: *Russian Journal of Bioorganic Chemistry*, 2007, vol. 33, no. 3; see also http://www.maik.ru

Key words: cyclization, heterocyclic steroids, 3β -hydroxy-3'-methyl-1'(N)-acylandrost-5-eno[16,17-d]pyrazo-lines, 3β -hydroxy-3'-methylandrost-5-eno[16,17-d]pyrazole, Δ^{16} -20-thiooxamidohydrazones